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The function of a protein is generally determined by its three-dimensional (3D)
structure. Thus, it would be useful to know the 3D structures of the thousands of
protein sequences that are emerging from the many genome projects. This is the aim
of structural genomics. The aim will be achieved by a focused, large-scale determina-
tion of protein structures by X-ray crystallography and nuclear magnetic resonance
spectroscopy, combined efficiently with accurate protein structure modeling tech-
niques. In particular, comparative or homology-based protein structure modeling
is expected to play a major role in this effort. Comparative modeling calculates a
3D model of a given protein sequence from the previously determined structures of
related proteins. It involves fold assignment, sequence–structure alignment, model
building, and model evaluation. To enable large-scale modeling, these steps are be-
ing assembled into a completely automated pipeline. The methods involved in the
pipeline and their performance are reviewed. The errors in the resulting models are
described and their uses in biology are discussed.c© 1999 Academic Press

1. INTRODUCTION

In a few years, the genome projects will have provided us with the amino acid se-
quences of more than a million proteins—the catalysts, inhibitors, messengers, receptors,
transporters, and building blocks of the living organisms. The full potential of the genome
projects will only be realized once we assign and understand the function of these new
proteins. The biochemical function of a protein is defined by its interactions with other
molecules and the biological function is a consequence of these interactions. While protein
function is best determined experimentally [1], it can sometimes be predicted by matching
the sequence of a protein with proteins of known function [1–3]. One way to improve such
sequence-based predictions of function is to rely on the known native three-dimensional
(3D)1 structure of proteins [4]. The 3D structure of a protein generally provides more

1 Abbreviations used: 3D, three-dimensional; NMR, nuclear magnetic resonance; PDB, Protein DataBank.
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information about its function than its sequence because interactions of a protein with other
molecules are determined by amino acid residues that are close in space but are frequently
distant in sequence.

To determine or predict 3D structure of all the proteins encoded in the genomes is the
aim of structural genomics[5]. Unfortunately, experimental methods for protein structure
determination are time consuming and not successful for all proteins; consequently, 3D
structures have been determined for only a fraction of proteins for which the amino acid
sequence is known; while there are approximately 356,000 protein sequences in GENPEPT
(December 14, 1998; URL ftp://ncbi.nlm.nih.gov/genbank/genpept.fsa), there are only 8876
known protein structures in the Brookhaven Protein Databank (PDB) (March 17, 1999; URL
http://www.pdb.bnl.gov/statistics.html) [6]. However, a useful 3D model can frequently be
obtained by comparative or homology protein structure modeling, which can construct
all-atom 3D models for those proteins that are related to at least one known protein struc-
ture. Even though comparative modeling is applicable only to the members of structurally
characterized protein families, it is the most appropriate modeling method for structural
genomics. The reason is that it results in the most accurate, detailed, and explicit models of
protein structure. This maximizes the usefulness of the models in biological applications
such as interpretation of the existing functional data, design of ligands, and construction of
mutants and chimeric proteins for testing new functional hypotheses [7]. Studies on model
genomes indicate that currently up to 40% of the known protein sequences have at least
one segment related to one or more known structures [8, 9, 73, 74]. Thus, the number of
sequences that can be modeled relatively accurately by comparative modeling is already an
order of magnitude larger than the number of experimentally determined protein structures.
This ratio is likely to increase in the future and underscores the need for an efficient combi-
nation of experimental and theoretical efforts in structural genomics. An efficient structural
genomics project will put every protein sequence within a “modeling distance” of at least
one known protein structure while minimizing the total cost of the project. This can be
achieved by focusing X-ray crystallography and magnetic resonance spectroscopy on pro-
teins with new folds and on carefully selected representative structures in more divergent
or important protein families.

In this review, we emphasize our own work and experience, although we have profited
greatly from the contributions of many others, cited in the list of references. We introduce the
technique of comparative protein structure modeling (Section 2), discuss it in the context of
large-scale modeling of thousands of proteins (Section 3), describe some applications of the
many resulting models in biology (Section 4), and conclude with future trends (Section 5).

2. COMPARATIVE PROTEIN STRUCTURE MODELING

Comparative or homology protein modeling uses experimentally determined protein
structures (templates) to predict conformation of another protein with a similar amino
acid sequence (target). The necessary conditions for calculating a useful model are (i) that
the similarity between the target sequence and the template structures be detected and
(ii) that the correct alignment between them be constructed. For reviews of comparative
modeling see Refs. [7, 10–13]. This approach to protein structure modeling is possible
because a small change in the protein sequence usually results in a small change in its three-
dimensional structure [14, 15]. Comparative modeling remains the only modeling method
that can provide models with an rms error lower than 2Å.
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A traditional classification of protein structure prediction methods includes two other
major classes in addition to comparative modeling [16, 17],ab initio protein structure
prediction and fold assignment. Each one of these classes includes a large variety of different
methods. The defining feature of theab initio methods is that they attempt to predict the
native structure only from the sequence of the target protein, using an objective function
which may depend on the interaction energies and sometimes on the knowledge of other
related sequences. Unfortunately, such methods have so far produced models with the
correct fold and an rms error of approximately 4Å for only a few simple and small protein
structures [18]. The defining feature of the fold assignment methods is that they assign a
fold to the target sequence by aligning the target sequence with the most compatible known
protein structure in the set of alternatives [19]. As such, the fold assignment methods are
best seen as the first, and in many cases the most important, step in comparative protein
structure modeling (see below).

All current comparative modeling methods consist of four sequential steps [11]. The
first step is to identify the proteins with known 3D structures that are related to the target
sequence. The second step is to align them with the target sequence and to select those
known structures that will be used as templates. The third step is to build the model for
the target sequence given its alignment with the template structures. In the fourth step, the
model is evaluated using a variety of criteria. If necessary, the alignment and model building
are repeated until a satisfactory model is obtained.

A major difference between the different comparative modeling methods is in how the 3D
model is calculated from a given alignment (step 3 above). The original and still the most
widely used method is modeling by rigid body assembly [20–22]. The method constructs the
model from a few core regions, and loops and side chains, which are obtained from dissected
related structures. This assembly involves fitting the rigid bodies on the framework, which
is defined as the average of the Cα atoms in the conserved regions of the fold. Another
family of methods, modeling by segment matching, relies on approximate positions of
conserved atoms from the templates to calculate the coordinates of other atoms [23–26].
This is achieved by the use of a database of short segments of protein structure, energy
or geometry rules, or some combination of these criteria. The third group of methods,
modeling by satisfaction of spatial restraints, uses either distance geometry [27, 28] or
optimization techniques [29] to satisfy spatial restraints obtained from the alignment of
the target sequence with homologous templates of known structure. As this restraint-based
modeling can use many different types of information about the target sequence, it is perhaps
the most promising of all comparative modeling techniques. In addition to the methods for
modeling the whole fold, numerous other techniques for predicting loops [30, 31] and side
chains [32, 33] on a given backbone have also been described. These methods can often be
used in combination with each other and with comparative modeling techniques.

3. COMPARATIVE PROTEIN STRUCTURE MODELING ON A LARGE SCALE

Large-scale comparative modeling is an automated application of comparative modeling
to thousands of protein sequences, not only a few. Since many computer programs for
performing each of the operations in comparative modeling already exist, it may seem
trivial to construct a pipeline that completely automates the whole process. In fact, it is
not easy to do so in a robust manner. For a good reason, most of the tasks in modeling
of individual proteins, including template selection, alignment, and model evaluation, are
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typically performed with significant human intervention. This allows the use of the best tool
for a particular problem at hand and consideration of many different sources of information
that are difficult to take into account entirely automatically. Because large-scale modeling
can only be performed in a completely automated manner, the main challenge is to build an
automated and robust pipeline that approaches the performance of a human expert as much
as possible.

Recently, two applications of comparative modeling to complete genomes have been
described. For the sequences encoded in theE. coligenome, models were built for 10–15% of
the proteins using the SWISS-MODEL web server [34, 35]. Another such study was our own
modeling of five procaryotic and eucaryotic genomes [36]. The flowchart for the modeling
and some technical details are given in Fig. 1. Our calculation resulted in the models for
substantial segments of 17.2%, 18.1%, 19.2%, 20.4%, and 15.7% of all proteins in the
genomes ofSaccharomyces cerevisiae(6218 proteins in the genome; Fig. 2),Escherichia
coli (4290 proteins),Mycoplasma genitalium(468 proteins),Caenorhabditis elegans(7299
proteins, incomplete), andMethanococcus jannaschii(1735 proteins), respectively. An
important feature of this study was an evaluation of all the models by a statistical potential
function [37] (Fig. 1). This allowed identification of those models that were likely to be based
on correct templates and at least approximately correct alignments. As a result, 236 yeast
proteins without any prior structural information were assigned to a particular fold family;
40 of these proteins did not have any prior functional annotation. All the alignments and
models of the five genomes are available on the Internet at URL http://guitar.rockefeller.edu,
as is our program MODELLER used for sequence–structure alignment, model building, and
model evaluation. The models are also accessible through the Saccharomyces Genome
Database (SGD) (URL http://genome-www.stanford.edu/Saccharomyces/).

We now discuss each of the steps in the pipeline individually, as applied so far by others
and us, either in large-scale fold assignment or comparative modeling.

3.1. Template Search and Selection

Traditionally, the selection of template structures is done by programs that detect sequence
similarity only, including FASTA [38], BLAST [39], and programs based on dynamic pro-
gramming methods [40, 41]. These methods are generally rapid, automated, and useful for
detection of relatively close relationships between proteins. However, in order to maximize
the usefulness of the database of known protein structures, it is also necessary to detect
remotely related sequence–structure pairs. This is usually done with more sophisticated
methods that rely on structural information or multiple sequences from the family of interest.
These methods include threading and 3D profile matching [42–44], Hidden Markov Models
[45–47], and iterative sequence similarity searches such as PSI-BLAST [48]. Detection of
remote relationships can sometimes also be achieved by relaxing the similarity cutoffs in
the simple sequence comparison schemes, albeit at the cost of a higher number of false
positives; these may then be eliminated by 3D model building and model evaluation [36].

Both simple sequence similarity searches and more sophisticated methods have been
used for fold assignment of protein sequences in whole genomes. Sequence similarity
searches have been used to assign templates for 10–15% of the proteins in theE. coli
genome [34]. We have used the program ALIGN [49] for pairwise sequence–sequence
alignment with local dynamic programming to find suitable templates for up to 20% of
the sequences in the genomes ofS. cerevisiae, E. coli, C. elegans, M. jannaschii, and
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FIG. 1. Flowchart for comparative protein structure modeling on the genome scale [36]. To find template
structures for modeling of the protein sequences, each of the sequences is compared with each of the 2045
potential templates corresponding to the protein chains representative of the Brookhaven Protein Databank (PDB)
of known protein structures [6]. The representative PDB proteins have at most 95% sequence identity to each
other, or have length difference of at least 30 residues or 30%; they are also the highest quality structures within
each group. The matching is done by the program ALIGN, which implements the local dynamic programming
method with a new gap penalty function and has a search sensitivity higher than that of BLAST [71]. Each
sequence–structure matching is run with the default gap penalty parameters first. A match is considered significant
or insignificant if the alignment score is more than 22 or less than 19 nats, respectively, where the nat is a unit
for measuring significance of a match [49]. All the pairs with intermediate matches with scores between 19 and
22 nats are realigned using 600 combinations of the gap penalty parameters. The match is finally considered
significant if the best of the 600 alignments has a score of at least 22 nats. The PDB chain from a significant match
is used as the template structure for the corresponding region of the sequence. To obtain the target–template
alignment for comparative modeling, the matching parts of the template structure and the protein sequence are
realigned by the use of the ALIGN2D command (R.S and A.Š., in preparation) of the MODELLER program [16, 29,
54]. This command implements a global dynamic programming method for comparison of two sequences, but
also relies on the observation that evolution tends to place residue insertions and deletions in the regions that are
solvent exposed, curved, outside secondary structure segments, and between two Cα positions close in space. Gaps
in these structurally reasonable positions are favored by a variable gap penalty function that is calculated from
the template structure alone. As a result, the alignment errors are reduced by approximately one third relative to the

(Continued)
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FIG. 2. Distribution of the sequence identity between yeast protein models and corresponding templates [36].
The 3992 reliable models for substantial segments of 1071 different proteins that are predicted to be based on a
correct template and approximately correct alignment are represented by the filled bars, and the 4588 unreliable
models that are predicted to be based on a mostly incorrect alignment or an incorrect template are represented by
the empty bars. The inset shows the corresponding distribution of the alignment significance score calculated by the
program ALIGN [71]. The unreliable models with sequence identity to the templates higher than 35% correspond
mostly to sequences shorter than 50 residues.

M. genitalium[36] (see above; Fig. 1). Fold recognition by 3D profile matching assigned
folds to 22% of the proteins encoded by theM. genitalium genome[50]. A new profile–profile
sequence alignment method was able to find homologues of known structure for 38% of the
M. genitaliumproteins [8]. Similar results [9] were obtained with PSI-BLAST [48], which
also relies on multiple sequence information in finding related proteins. Even though the
latter two studies were performed a year after the first three reports, they clearly demonstrate

(Continued)—standard sequence alignment techniques. The refined sequence–structure alignment is used by
MODELLER to construct a 3D model of the matched protein sequence region, containing all main chain and side
chain non-hydrogen atoms. Model building begins by extracting distance and dihedral angle restraints on the
target sequence from its alignment with the template structure. These template-derived restraints are combined
with most of the CHARMM energy terms [72] to obtain a full objective function. Finally, this function is optimized
to construct a model that satisfies all the spatial restraints as well as possible. The overall accuracy of the resulting
model is predicted by a procedure that relies on aZ-score from the program PROSAII [37]. The PROSAII Z-score
approximates the difference in free energy of an evaluated model and the mean free energy of the same sequence
threaded through unrelated folds, expressed in units of standard deviation. The free energies are calculated with
statistical potentials of mean force for single residues and pairs of residues [37]. By use of many models of proteins
with known structure, the distributions of the PROSAII Z-score were obtained for good models, which have more
than 30% of their Cα atoms within 3.5Å of their actual positions, and for bad models. These distributions are used
with the Bayesian theorem to calculate the probability that a given model with a certainZ-score is either good or
bad. Once a model is predicted to be good, its overall accuracy is evaluated more precisely based on an empirical
relationship between the fraction of the correctly modeled Cα atoms and the percentage sequence identity to the
template [36]. The modeling flowchart in this figure can result in duplicate and overlapping models of some
sequence regions. The flowchart has been implemented in a UNIX PERL script that calls the appropriate programs
for the individual tasks. Program CLUSTOR is used to distribute efficiently smaller jobs on many workstations,
without having to adapt the individual programs for parallel execution (URL http://www.activetools.com).
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FIG. 3. Simulated effect of the growth of PDB on the number of modeled sequences in various genomes. The
data for the plot were obtained from the large-scale modeling study performed with the March 1997 version of
PDB [36]. Each point represents the number of protein sequences that would have at least one reliable model using
only structures deposited in PDB by the end of the corresponding year. CE,C. elegans; SC,S. cerevisiae; EC,
E. coli; MJ, M. jannaschii; MG, M. genitalium. The empty circle indicates the actual number of the MG proteins
modeled at the end of 1997. The inset shows the growth of the fraction of the proteins in each genome that could
be modeled as a function of time.

the increased sensitivity of matching a sequence against multiple sequences, compared to
the matching against a single sequence or even threading against a single structure; at most
a few percentage points of the difference are due to the increase in the number of known
structures (Fig. 3).

Although fold recognition is useful for template selection and frequently for functional
annotation, it is not the ultimate goal of structural genomics. If a full understanding of the
function of a protein is to be achieved, a detailed, full-atom 3D model needs to be obtained
and the whole comparative modeling procedure has to be applied. A model based on a
remotely related template structure is more likely to be grossly inaccurate because of the
errors in the alignment and the structural differences between the template structure and
the actual structure of the target sequence [51]. For this reason, the number of proteins
with a reliable comparative model will always be smaller than the number of correct fold
assignments.

3.2. Target–Template Alignment

Since no human intervention is possible in a large-scale effort and since no existing model-
building method can recover from an incorrect input alignment, it is particularly important
that the automated alignment method be as accurate and robust as possible. Simple pairwise
sequence–sequence alignment methods, such as dynamic programming approaches [40, 41],
can be used. However, at least two sources of additional information can be incorporated to
improve the alignments, similarly to the methods used for template identification. First, when
several homologous sequences are known, they can be used to construct a family sequence
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profile [8]. Second, structural information from the template structure(s) can also be used
to guide the alignment [36]. For example, the gap penalty function in the standard sequence
alignment programs can be modified to favor gaps in structurally reasonable contexts (A.Š.,
R.S., in preparation; 52, 53) (Fig. 1). Three-dimensional profile and threading methods [51]
can also be used, although it is not clear whether or not their alignments are more accurate
than multiple sequence alignments [8] or alignments from Hidden Markov Models [46].

3.3. Model Building

The method of choice for calculating atomic coordinates from a target–template align-
ment in large-scale modeling must be automated for building the core regions, loops, and side
chains in the target sequence. It should permit the use of several templates at the same time,
since this significantly increases the accuracy of the final models [54]. One such method
is modeling by satisfaction of spatial restraints as implemented in program MODELLER

[29, 54]. It was used for large-scale modeling by Adam Godzik (personal communication)
and us [36]. Comparative modeling is not CPU time intensive; it typically takes only a few
minutes per model. However, application of specialized methods for loop and side chain
modeling can be so time consuming that it is not yet possible to apply them on the genome
scale. Another important methodological improvement, which will require increased com-
puter power and/or better algorithms, involves automating the cycle of alignment, modeling,
and model evaluation for a single protein sequence [54, 55]. This approach can decrease the
effect of errors in the input alignment on the final model, but is computationally intensive,
requiring from several hours to several days of CPU time for a single target sequence.

3.4. Model Evaluation

Model evaluation should serve two roles to facilitate the use of the models in biology:
First, it needs to distinguish the models that have at least approximately correct fold (reli-
able models) from those that do not (unreliable models). Second, it needs to indicate which
smaller regions of a reliable model are potentially in error. Unreliable models are obtained
when incorrect templates are used; in addition, they also result from mostly incorrect align-
ments, even when the fold assignment is correct. Incorrect templates occur more frequently
when a low similarity cutoff is used in the template selection, which is needed to detect the
remote relationships and to minimize the number of missed templates. Comparative models
obtained from large-scale modeling have been assigned into the reliable or unreliable class
by a procedure [36] (Fig. 1) that relies on the statistical potential function from PROSAII
[37]. They have also been evaluated more precisely using a calibrated relationship between
the model accuracy and the percentage sequence identity on which the model is based [36].

4. USING COMPARATIVE PROTEIN STRUCTURE MODELS

In general, mistakes in comparative modeling include side chain packing errors, small
distortions and rigid body shifts in correctly aligned regions, errors in inserted regions
(loops), incorrect alignments, and incorrect templates [54]. The magnitude and prediction
of errors in comparative models have been discussed [36, 54]. Fortunately, a 3D model does
not have to be absolutely perfect to be helpful in biology, as illustrated by a large number of
successful studies that relied on comparative modeling [7]. The type of question that can be
addressed with a particular model clearly depends on its accuracy. A convenient and simple
predictor of model accuracy is the percentage sequence identity to the template on which
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the model was based. Although sequence identity is a useful predictor in many cases, the
accuracy of the models based on the same degree of similarity to the templates can vary
significantly (Fig. 1 in [36]). One reason is that a large change in structure can be caused by
a small change in sequence, binding of a ligand (i.e., induced fit), quaternary interactions,
and changes in the environment (e.g., crystal packing, solvent) [56, 57]. This highlights the
importance of using the templates whose structures were determined in the environment and
with the ligands that pertain to the target model. For example, the calcium binding proteins
of the calmodulin type consist of two globular domains, with a pair of EF-hand calcium
binding motifs each. The two domains are connected by a flexible helix. The binding of
the calcium ions can induce shifts of secondary structure segments within the domains as
well as large rigid body movement of the two domains relative to each other [57]. In such
cases, even comparative models based on very similar sequences of known structure will
have large errors. Fortunately, such cases are relatively rare. Comparative modeling of all
the known structures in the Brookhaven Protein Databank indicated that less than 5% of
the models based on more than 80% sequence identity have main chain rms errors larger
than 2Å (see the error bars at high sequence identity in Fig. 1B in [36]).

At the low end of the accuracy spectrum, there are models that are based on less than 25%
sequence identity and sometimes have less than 50% of the Cα atoms within 3.5Å of their
correct positions. However, such models still have the correct fold and even knowing only
the fold of a protein is frequently sufficient to predict its approximate biochemical function.
More specifically, only 9 of 80 fold families known in 1994 contained proteins (domains)
that were not in the same functional class, although 32% of all protein structures belonged
to one of the 9 superfolds [58]. Explicit 3D modeling and model evaluation provide the best
way of either confirming or rejecting a remote match [36, 54]. This is important because
most of the related protein pairs share less than 30% sequence identity (Fig. 2).

In the middle of the accuracy spectrum are the models based on approximately 35%
sequence identity, corresponding to 85% of the Cα atoms modeled within 3.5̊A of their
correct positions. Almost half of the 1071 reliably modeled proteins in the yeast genome
share more than approximately 35% sequence identity with their templates (Fig. 2). In such
cases, it is frequently possible to predict correctly important features of the target protein
that do not occur in the template structure. For example, the location of a binding site can be
predicted from clusters of charged residues [59], and the size of a ligand can be predicted
from the volume of the binding site cleft [60].

Another use of 3D models is that some binding and active sites, which cannot possibly
be found by searching for local sequence patterns [61, 62], frequently should be detectable
by searching for small 3D motifs that are known to bind or act on specific ligands [63, 64].
This is a consequence of the facts (i) that structure is more conserved than sequence [65];
(ii) that 3D motifs tend to consist of residues distant in sequence; and (iii) that there are
some 3D motifs whose residues do not follow the same order in sequence, even though
they have the same arrangement in space. An example of this is the serine catalytic triad
that almost certainly arose by convergent evolution in serine proteases of the trypsin and
subtilisin type, and also in some lipases [63].

In general, medium resolution models frequently allow a refinement of the functional
prediction based on sequence alone because ligand binding is most directly determined
by the structure of the binding site rather than its sequence. Even when the conserved
binding sites are present in the templates, comparative models can still add value to the
sequence-based analysis. For example, they can be used to construct site-directed mutants
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with altered or destroyed binding capacity, which in turn could test hypotheses about
the sequence–structure–function relationships. Other problems that can be addressed with
medium resolution comparative models include designing proteins that have compact struc-
tures without long tails, loops, and exposed hydrophobic residues for better crystallization;
or designing proteins with added disulfide bonds for extra stability.

The high end of the accuracy spectrum corresponds to models based on 50% sequence
identity or more. The average accuracy of these models approaches that of low resolution
X-ray structures (3̊A resolution) or medium resolution nuclear magnetic resonance (NMR)
structures (10 distance restraints per residue) [54]. The alignments on which these models
are based generally contain almost no errors. In addition to the already listed applications,
high quality models can be used for docking of small ligands into a protein [66] or for
docking of a protein to a protein [67, 68].

Large-scale comparative modeling opens new opportunities for tackling existing prob-
lems by virtue of providing many protein models from many genomes. One example is the
selection of a target protein for which a drug needs to be developed. A good choice is a
protein that is likely to have high ligand specificity; specificity is important because specific
drugs are less likely to be toxic. Large-scale modeling facilitates imposing the specificity
filter in target selection by enabling a structural comparison of the ligand binding sites
of many proteins, either human or from other organisms. Such comparisons may make it
possible to select rationally a target whose binding site is structurally most different from
the binding sites of all the other proteins that may potentially react with the same drug. For
example, when a human pathogenic organism needs to be inhibited, it may be possible to
select as the target that pathogen’s protein that is structurally most different from all the
human homologues. Alternatively, when a human metabolic pathway needs to be regulated,
the target identification could focus on that particular protein in the pathway that has the
binding site most dissimilar from its human homologues.

5. FUTURE DIRECTIONS

It seems likely that in the immediate future the largest improvements in the accuracy
and number of comparative models will come from more sensitive template identification,
more accurate alignments, more accurate loop modeling, and the growth of the structure
and sequence databases. For example, large-scale comparative modeling based on multiple
sequence information in template identification, alignment, and model building has not been
implemented yet, although it is clear that this will increase both the number and accuracy
of the resulting models. A case in point is that the use of multiple sequences increases the
rate of fold assignment for almost a factor of two to approximately 38% [8, 9].

Another important factor that determines the degree of structural coverage of a genome
is the size of the database of known protein structures. We simulated the impact of the
database growth on the number of reliable models (Fig. 3). The fraction of a genome for
which relatively accurate models can be calculated with the current modeling procedure
(Fig. 1) has grown approximately 3% yearly over the last 2 years; this corresponds to a
yearly increase in the number of modeled proteins by approximately 20%. The database
of known protein structures grows increasingly faster. At the moment, the doubling rate is
approximately 18 months. This progressive growth will undoubtedly continue because of the
improvements in the techniques for protein cloning, expression, purification, crystallization,
and structure determination by X-ray crystallography and NMR spectroscopy.
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Modeling of some proteins is an alternative to direct experimental determination by
X-ray crystallography or NMR spectroscopy, even though the models are less accurate
than experimentally determined structures. The factors favoring modeling are that it is
applicable to all proteins in a family containing at least one known structure, that it is
relatively fast (hours instead of months), and that it is inexpensive. Given current modeling
techniques, it seems reasonable to require models based on at least 30% sequence identity,
corresponding to one experimentally determined structure persequence familyrather than
fold family. Since there are between 1000 and 5000 fold families and perhaps about five
times as many sequence families [69], the experimental effort in structural genomics has
to deliver on the order of 10,000 protein domain structures. As an alternative, it has also
been suggested that 100,000 protein structures need to be determined by experiment [5];
this would allow calculation of models with higher accuracy than is possible with 10,000
known structures. These are large numbers, but they could be reduced significantly by a
relatively small improvement in the comparative modeling techniques. The reasons are
(i) that the errors in models increase rapidly as the target–template sequence identity drops
below 30% and (ii) that most related protein pairs share less than 30–35% sequence identity
(Fig. 2). For example, if the current average model accuracy corresponding to 30% sequence
identity is accepted as sufficient, a new comparative modeling method that is capable of
delivering equally accurate models based on only 25% sequence identity would decrease the
number of needed experimental structures by about 25%. On the scale of the “minimalist”
structural genomics project, this corresponds to approximately 2500 structures and justifies
a significant investment in the development of new comparative modeling methods and in
multi-processor computers for using these methods.

6. CONCLUSIONS

The fraction of protein sequences that can be modeled with useful accuracy by compara-
tive modeling is increasing rapidly. The main reasons for this improvement are the increases
in the numbers of known folds and the structures per fold family [69] as well as the im-
provement in the fold recognition and comparative modeling techniques [16]. It has been
estimated that globular protein domains cluster in only a few thousand fold families, ap-
proximately 800 of which have already been structurally defined [75]. Assuming the current
growth rate in the number of known protein structures, the structure of at least one member
of most globular folds will be determined in less than 10 years [69]. According to this argu-
ment, comparative modeling would be applicable to most of the globular protein domains
before the expected completion of the human genome project. However, there are some
classes of proteins, including membrane proteins, that will not be amenable to modeling
without improvements in structure determination and modeling techniques. For example, it
has been predicted that 839 (13.9%) of the yeast proteins have at least two transmembrane
helices [70]. To maximize the number of proteins that can be modeled reliably, a concerted
effort toward structural determination of the new folds by X-ray crystallography and NMR
spectroscopy is in order (http://genome5.bio.bnl.gov/Proteome/) [5]. A combination of a
more complete database of known protein structures with accurate modeling techniques
will efficiently increase the value of sequence information from the genome projects.
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